ICMU Bayes Intro, Homework 2 Due on September 30th, 2025

1. Recall the set up from the last problem in homework 1. We have $\lambda > 0$ — an unknown rate parameter of a Poisson distribution — and Y_1, \ldots, Y_n are iid samples from this Poisson distribution. We assume the following prior distribution for λ :

$$\lambda \sim \text{Gamma}(s, r)$$
; in this parameterization $E(\lambda) = \frac{s}{r}$.

- (a) Using values of s and r you chose while completing homework 1 and data from 10 friends on the number of messages they received during the most recent hour (0, 1, 1, 1, 3, 3, 2, 6, 5, 2),
 - i. Compute the posterior mean of λ ,
 - ii. Compute the 95% Bayesian credible interval for λ .
- 2. Find the 4th moment $(E(X^4))$ of a Beta distribution with parameters $\alpha = 2$ and $\beta = 5$ using
 - (a) Deterministic integration,
 - (b) Monte Carlo integration. Experiment with the number of Monte Carlos samples to get a desired precision.
- 3. Approximate $\int_0^\infty e^{-x^5} dx$ using
 - (a) Deterministic integration,
 - (b) Monte Carlo integration.

Hint: Uniform distribution won't work here, because uniform distribution is not defined on $[0, \infty]$. So I suggest using exponential distribution samples instead. Think about how to write the desired integral in terms of an expectation with respect to an exponentially distributed random variable.