ICMU Bayes Intro, Homework 1 Due on September 26th, 2025

- 1. Exit poll results from a local election, where 2 candidates were competing, found that 56% of the respondents voted in favor of Candidate A. They also estimated that of those who did vote in favor for Candidate A, 36% had a college degree, while 48% of those who voted for Candidate B had a college degree. Suppose we randomly sampled a person who participated in the exit poll and found that they had a college degree. What is the probability that they voted in favor of Candidate A? Show all your work.
- 2. Let's revisit our example of estimating the proportion of people who had COVID-19 in Los Angeles from a random sample. As in class, we use Beta(2,20) prior for the θ unknown proportion and have y=3 individuals who tested positive for SARS-CoV-2 antibodies out of n=100 recruited study participants. We are interested in predicting how many positive individuals we will have if we conduct the study one more time: y^{new} . Using the posterior distribution for θ , $p(\theta \mid y)$,
 - (a) Show that the posterior predictive distribution $p(y^{\text{new}} \mid y)$ is a probability mass function of a Beta-Binomial distribution

(https://en.wikipedia.org/wiki/Beta-binomial_distribution). Compute parameters of this distribution.

Hint: When working with $p(y^{\text{new}} \mid y)$, work out the joint density $p(y^{\text{new}}, \theta \mid y)$ first. You can use the fact that $p(y^{\text{new}} \mid \theta, y) = p(y^{\text{new}} \mid \theta)$ — this says that if I know my model parameters, I don't need to know observed data to make predictions, I can just use my model (binomial in this case).

- (b) Plot the probability mass function of the Beta-Binomial distribution above in R. Install extraDistr package in R and use the dbbinom() function from this package when making this plot.
- (c) Computing posterior predictive mean $E(y^{\text{new}} \mid y)$ and $Var(y^{\text{new}} \mid y)$.
- 3. (adapted from chapter 5 material of the "Bayes Rules!" book) If a likelihood-prior pair results in the posterior distribution that belongs to the same family of distributions as the prior, this pair of distributions is called **conjugate**. We have seen that Beta prior and Binomial likelihood form one such conjugate pair. Another such pair is Gamma prior and Poisson likelihood.

Let $\lambda > 0$ be an unknown rate parameter of a Poisson distribution and Y_1, \ldots, Y_n be iid samples from this Poisson distribution. We assume the following prior distribution for λ :

$$\lambda \sim \text{Gamma}(s, r)$$
; in this parameterization $E(\lambda) = \frac{s}{r}$.

- (a) Prove that $p(\lambda \mid y_1, \dots, y_n)$ is density of a Gamma distribution and find parameters of this Gamma distribution.
- (b) Let λ be the rate of text/sms messages people receive per hour. Suppose our prior belief is that people receive around 5 messages per hour, with standard deviation of 0.25 messages. Find a Gamma prior that approximately encodes this prior belief and plot its density.
- (c) You collect data from 10 friends and find that during the most recent hour they received 0, 1, 1, 1, 3, 3, 2, 6, 5, and 2 messages respectively. Find the posterior distribution of λ conditional on this dataset and plot the posterior density of λ together with its prior in the same plot.