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Finite Signals and Discrete Fourier transform

Let f be a signal of finite length, i.e f : Zd
N → C.

Suppose that the Fourier transform of f is transmitted, where

f̂ (m) = N− d
2

∑
x∈Zd

N

χ(−x ·m)f (x); χ(t) = e
2πit
N .

Fourier Inversion says that we can recover the signal by using the
Fourier inversion:

f (x) = N− d
2

∑
m∈Zd

N

χ(x ·m)f̂ (m).

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine

2 / 108



Finite Signals and Discrete Fourier transform

Let f be a signal of finite length, i.e f : Zd
N → C.

Suppose that the Fourier transform of f is transmitted, where

f̂ (m) = N− d
2

∑
x∈Zd

N

χ(−x ·m)f (x); χ(t) = e
2πit
N .

Fourier Inversion says that we can recover the signal by using the
Fourier inversion:

f (x) = N− d
2

∑
m∈Zd

N

χ(x ·m)f̂ (m).

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine

2 / 108



Finite Signals and Discrete Fourier transform

Let f be a signal of finite length, i.e f : Zd
N → C.

Suppose that the Fourier transform of f is transmitted, where

f̂ (m) = N− d
2

∑
x∈Zd

N

χ(−x ·m)f (x); χ(t) = e
2πit
N .

Fourier Inversion says that we can recover the signal by using the
Fourier inversion:

f (x) = N− d
2

∑
m∈Zd

N

χ(x ·m)f̂ (m).

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine

2 / 108



Exact recovery problem

The basic question is, can we recover f exactly from its discrete
Fourier transforms if {

f̂ (m) : m ∈ S
}

are unobserved (or missing due to noise, other interference, or
security), for some S ⊂ Zd

N?

The answer turns out to be YES if f is supported in E ⊂ Zd
N , and

|E | · |S | < Nd

2
,

with the main tool being the Fourier Uncertainty Principle.
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Fourier Inversion and Plancherel

Given f : Zd
N → C, we shall use the following two formulas repeatedly:

(Fourier Inversion)

f (x) = N− d
2

∑
m∈Zd

N

χ(x ·m)f̂ (m),

and

(Plancherel) ∑
m∈Zd

N

|f̂ (m)|
2
=
∑
x∈Zd

N

|f (x)|2.
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Proof of Fourier Inversion

We have
N− d

2

∑
m∈Zd

N

χ(x ·m)f̂ (m)

= N− d
2

∑
m∈Zd

N

χ(x ·m)N− d
2

∑
y∈Zd

N

χ(−y ·m)f (y)

=
∑
y∈Zd

N

f (y)N−d
∑
m∈Zd

N

χ((x − y) ·m) = f (x)

by orthogonality.
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Proof of Plancherel

We have ∑
m∈Zd

N

|f̂ (m)|
2

=
∑
m∈Zd

N

N−d
∑

x ,y∈Zd
N

χ((x − y) ·m)f (x)f (y)

=
∑

x ,y∈Zd
N

f (x)f (y)N−d
∑
m∈Zd

N

χ((x − y) ·m)

=
∑
x∈Zd

N

|f (x)|2.
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A few simple calculations: the paraboloid

Let N be an odd prime and define

P = {x ∈ Zd
N : xd = x21 + · · ·+ x2d−1}.

We have
1̂P(m) = N− d

2

∑
y∈Zd−1

N

χ(−y ·m′ + ||y ||md),

where
||y || = y21 + y22 + · · ·+ y2d−1.
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Paraboloid (continued)

Suppose that md = 0 and m′ ̸= 0. Then

1̂P(m
′, 0) = N− d

2

∑
y∈Zd−1

N

χ(−y ·m) = 0.

If md ̸= 0, let’s consider the case m′ ≡ 0. We obtain

N− d
2

∑
y∈Zd−1

N

χ(−md ||y ||),

which is a product of sums of the form

g(a) =
∑
t∈ZN

χ(at2), the classical Gauss sum.
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Gauss sum estimation

Suppose that N is an odd prime and a ̸= 0. We have

|g(a)|2 =
∑
t,s

χ(a(t2 − s2)) =
∑
t,s

χ(ats)

=
∑
u

∑
ts=u

χ(au) =
∑
u

χ(au)n(u),

where
n(u) = |{(t, s) : ts = u}|.

It is not difficult to see that n(0) = 2N − 1 and N − 1 otherwise, so

|g(a)|2 = 2N − 1 + (N − 1)
∑
u ̸=0

χ(au)

= N + (N − 1)
∑
u

χ(au) = N.
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Back to the paraboloid

It follows that if a ̸= 0,
|g(a)| =

√
N.

Going back to the paraboloid and N is an odd prime, we see that if
m′ = 0,md ̸= 0,

|1̂M(0, . . . , 0,md)| = N− d
2

∑
m∈Zd−1

N

χ(md ||y ||)

= N− d
2 (
√
N)

d−1
= N− 1

2 .

If md ̸= 0 and m′ ̸= (0, . . . , 0), we can complete the square and
obtain the same bound, i.e

|1̂P(m)| = N− 1
2 .

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine
10 / 108



Back to the paraboloid

It follows that if a ̸= 0,
|g(a)| =

√
N.

Going back to the paraboloid and N is an odd prime, we see that if
m′ = 0,md ̸= 0,

|1̂M(0, . . . , 0,md)| = N− d
2

∑
m∈Zd−1

N

χ(md ||y ||)

= N− d
2 (
√
N)

d−1
= N− 1

2 .

If md ̸= 0 and m′ ̸= (0, . . . , 0), we can complete the square and
obtain the same bound, i.e

|1̂P(m)| = N− 1
2 .

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine
10 / 108



The sphere: life becomes much more interesting!

Let

S = {x ∈ Zd
N : x21 + x22 + · · ·+ x2d = 1},N odd prime.

Suppose that m ̸= 0. We have

1̂S(m) = N− d
2

∑
x

χ(−x ·m)N−1
∑
s ̸=0

χ(s(||x || − 1)).

Since

sx2j − xjmj = s(x2j − xjmj/s) = s(xj −mj/2s)
2 −m2

j /4s
2),

we can change variables above and arrive at

N− d
2
−1
∑
s ̸=0

∑
x∈Zd

N

χ(s||x ||)χ(−s)χ(−||m||/4s).
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The sphere (continued)

Using the Gauss sum identity we obtain a few minutes ago, the
expression above equals

N−1
∑
s ̸=0

γd(s)χ(−s − ||m||/4s),

where
|γ(s)| = 1.

The ”innocent” looking expression above is a twisted Kloosterman
sum. Its modulus is bounded by 2

√
N. The proof of this fact is very

sophisticated and uses highly non-trivial number theory.

In conclusion, if m ̸= 0,

|1̂S(m)| ≤ CN− 1
2 .
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The square root law

In both the case of the sphere and the paraboloid, we established an
estimate of the form

|1̂S(m)| ≤ CN− d
2 |S |

1
2 , m ̸= 0, N odd prime.

This estimate is an example of the so-called ”square root law” for
exponential sums. A better estimate (up to a constant) is not
possible because of Plancherel.

An interesting situation arises if we ask whether such estimate can
ever hold in a non-field setting. The is where we now (briefly) turn
our attention.
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Zero divisors are problematic

Theorem

(A.I., B. Murphy and J. Pakianathan (2014)) Let Ri be a sequence of
finite rings (not necessarily commutative) such that |Ri | is odd and
|Ri | → ∞ as i → ∞. Suppose that∣∣∣∣∣∑

uv=1

χ(u, v)

∣∣∣∣∣ ≤ C |R∗
i |

1
2 ,

where χ is a non-trivial character on Ri , and R∗
i is the ring of units of Ri .

Then Ri s are eventually finite fields.
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Zero divisors are problematic (general formulation)

Theorem

(N. Kingsbury (2024)) Let f (X1, . . . ,Xd−1) be a polynomial in
Z [X1, . . . ,Xd−1]. Let Vf (R) denote the solution set to

Xd = f (X1, . . . ,Xd−1)

over a finite ring R.

Suppose a sequence of finite rings {Ri} has the property that Fourier
transforms over V (Ri ) satisfy square root cancellation (for some fixed
constant).

Then all but finitely many of the rings are fields or matrix rings of small
dimension relative to d .
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From Fourier decay to additive energy

Suppose that S satisfies

|1̂S(m)| ≤ CFourierN
− d

2 · |S |
1
2 for m ̸= 0.

We have
∑

m |1̂S(m)|4 =

= N−2d
∑

x ,y ,x ′,y

∑
m

χ(m · (x + y − x ′ − y ′))1S(x)1S(y)1S(x
′)1S(y

′)

= N−d |{(x , y , x ′, y ′) ∈ S4 : x + y = x ′ + y ′}| = N−dΛ(S), i.e.

Λ(S) = |{(x , y , x ′, y ′) ∈ S4 : x + y = x ′ + y ′}| = Nd
∑
m

|1̂S(m)|4.
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From Fourier decay to additive energy (continued)

By assumption, the right-hand side is bounded by

Nd · C 2
Fourier · N−d · |S | ·

∑
m

|1̂S(m)|2.

By Plancherel, this expression equals

C 2
Fourier · |S |

2,

from which we conclude that

Λ(S)

|S |2
≤ C 2

Fourier .
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An elementary point of view: setup

Suppose that E ⊂ Zd
N and f (x) = 1E (x), the indicator function of E .

Suppose that the Fourier transform E is transmitted, and the
frequencies in S ⊂ Zd

N are unobserved.

By Fourier Inversion,

1E (x) = N− d
2

∑
m∈Zd

N

χ(x ·m)1̂E (m)

= N− d
2

∑
m/∈S

χ(x ·m)1̂E (m) + N− d
2

∑
m∈S

χ(x ·m)1̂E (m)
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An elementary point of view: direct estimation

= I (x) + II (x).

By the triangle inequality,

|II (x)| ≤ N− d
2 · |S | · N− d

2 · |E | = N−d · |E | · |S |.

Since we know nothing about S , the best we can do is assume that
the quantity above is small.
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An elementary point of view: rounding

If

N−d |E ||S | < 1

2
,

we can take the modulus of I (x) and round it up to 1 if it is ≥ 1
2 , and

round it down to 0 otherwise.

This gives us exact recovery using a simple and direct algorithm (to
be henceforth referred to as the Direct Rounding Algorithm (DRA)) if

|E | · |S | < Nd

2
.

But what happens if we consider general signals?
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Matolcsi-Szucks/ Donoho-Stark point of view

Let h : Zd
N → C. Then the classical Uncertainty Principle says that

|supp(h)| · |supp(ĥ)| ≥ Nd .

Suppose that f : Zd
N → C is supported in E ⊂ Zd

N , with the
frequencies in S ⊂ Zd

N unobserved.

If f cannot be recovered uniquely, then there exists a signal
g : Zd

N → C such that g also has |supp(f )| non-zero entries,

f̂ (m) = ĝ(m) for m /∈ S ,

and f is not identically equal to g .
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Uncertainty Principle → Unique Recovery

Let h = f − g . It is clear that ĥ has at most |S | non-zero entries, and
h has at most 2|supp(f )| non-zero entries.

By the Uncertainty Principle, we must have

|supp(f )| · |S | ≥ Nd

2
.

Therefore, if we assume that

|supp(f )| · |S | < Nd

2
,

we must have h = 0, and hence the recovery is unique.
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The classical uncertainty principle is, in general, sharp

Let N be an odd prime, and let S be a k-dimensional subspace of Zd
N ,

1 ≤ k ≤ d − 1.

Then
1̂S(m) = N− d

2
+k1S⊥(m).

Since |S | · |S⊥| = Nd , the classical uncertainty principle is sharp.

We are going to see that in the presence of non-trivial restriction
estimates, we can do much better. We are also going to see that
non-trivial restriction estimates ”typically” hold.
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Proof of the classical uncertainty principle

We have
h(x) = N− d

2

∑
m∈S

χ(x ·m)ĥ(m).

By the triangle inequality,

|h(x)| ≤ N− d
2 · |S | · N− d

2 ·
∑
x∈Zd

N

|h(x)|.

Summing both sides over x ∈ E and cancelling the L1 norms of h on
both sides, we obtain

|E | · |S | ≥ Nd .
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Additive energy uncertainty principle

The following result was recently established by K. Aldahleh, A.
Iosevich, J. Iosevich, J. Jaimangal, A. Mayeli, and S. Pack.

Definition (Additive energy)

Let A ⊂ Zd
N . The additive energy of A, denoted by Λ(A), is defined as

follows:

Λ(A) =
∣∣{(x1, x2, x3, x4) ∈ A4 : x1 + x2 = x3 + x4

}∣∣ .

This quantity measures the extent to which a given set is
arithmetically closed.
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Additive energy uncertainty principle

Theorem (Additive Energy Uncertainty Principle)

Let f : Zd
N → C with support in E and supp(f̂ ) = S . Then for any

α ∈ [0, 1], (
|E |max

U⊂S

Λ(U)

|U|2

)α

·
(
|S |max

F⊂E

Λ(F )

|F |2

)1−α

≥ Nd .

Since |Λ(U)| ≤ |U|3, the results above recover the classical
uncertainty principle.

If |Λ(F )| = o(|U|3) for all F ⊂ E , and/or if |Λ(U)| = o(|U|3) for all
U ⊂ Σ, which holds in the generic case, we get an improved
uncertainty principle.
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A familiar example - the circle

Suppose that N is an odd prime and d = 2. Let

S =
{
m ∈ Z2

N : m2
1 +m2

2 = 1
}
.

It is not difficult to check that if m+ l = m′ + l ′,m,m′, l , l ′ ∈ S , then
m = m′, l = l ′; m = l ′, l = m′; or m = −l ,m′ = −l ′. This implies
that

max
U⊂S

Λ(U)

|U|2
≤ 3.

It follows that if f is supported in E and f̂ is supported in S , then the
additive energy uncertainty principle tells us that |E | ≥ N2

3 .

Since N is prime, there are more algebraic ways of addressing
uncertainty in this setting as we shall eventually see.
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Restriction theory enters the picture

We say that S ⊂ Zd
N satisfies the (p, q) restriction estimate

(1 ≤ p ≤ q) with uniform constant Cp,q > 0 if for any function
f : Zd

N → C,

(
1

|S |
∑
m∈S

|f̂ (m)|
q

) 1
q

≤ Cp,qN
− d

2

∑
x∈Zd

N

|f (x)|p
 1

p

.

We shall need the following ”universal” restriction theorem.

Theorem

(A.I. and A. Mayeli) Let f : Zd
N → C and let S be a subset of Zd

N . Then(
1

|S |
∑
m∈S

|f̂ (m)|
2

) 1
2

≤
(
|S |
N

d
2

)− 1
2

·
(
max
U⊂S

Λ(U)

|U|2

) 1
4

·N− d
2 ·

∑
x∈Zd

N

|f (x)|
4
3

 3
4
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From restriction directly to uncertainty

Before proving the universal restricion theorem, we are going to
develop a simple mechanism for going directly from restriction to
uncertainty, where the more non-trivial the restriction estimate
becomes, the better uncertainty principle we obtain. More eleborate
versions of this approach will be developed a bit later.

Theorem ( Uncertainty Principle via Restriction Theory – A.I. &
A.Mayeli, 2023)

Suppose that f , f̂ : Zd
N → C, with f supported in E ⊂ Zd

N , and f̂
supported in S ⊂ Zd

N . Suppose S satisfies the (p, q) restriction estimate
with norm Cp,q. Then

|E |
1
p · |S | ≥ Nd

Cp,q
.
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Proof of Uncertainty via Restriction

Suppose that f is supported in a set E , and f̂ is supported in a set S .
Then by the Fourier Inversion Formula and the support condition,

f (x) = N− d
2

∑
m∈Zd

N

χ(x ·m)f̂ (m) = N− d
2

∑
m∈S

χ(x ·m)f̂ (m).

By Holder’s inequality,

|f (x)| ≤ N− d
2 · |S | ·

(
1

|S |
∑
m∈S

|f̂ (m)|
q

) 1
q

.

By the restriction bound assumption, this expression is bounded by

|S | · Cp,q · N−d ·

∑
x∈Zd

N

|f (x)|p
 1

p

,
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Proof of Uncertainty Principle via Restriction I (continued)

and by the support assumption, this quantity is equal to

|S | · Cp,q · N− d
2 ·

(∑
x∈E

|f (x)|p
) 1

p

.

Putting everything together, we see that

|f (x)| ≤ |S | · Cp,q · N−d ·

(∑
x∈E

|f (x)|p
) 1

p

.

Raising both sides to the power of p, summing over E , and dividing
both sides of the resulting inequality by

∑
x∈E |f (x)|p, we obtain

|S |p · |E | · Cp
p,q ≥ Ndp.
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Proof of Uncertainty Principle via Restriction I (finale)

or, equivalently,

|E |
1
p · |S | ≥ Nd

Cp,q
,

as desired.

This completes the proof of the Uncertainty Principle via Restriction
Theory.
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Proof of the universal restriction theorem

We have ∑
m∈S

|f̂ (m)|
2
=
∑
m

1S(m)f̂ (m)g(m),

where
g(m) = 1S f̂ (m).

The expression above equals

∑
x

f (x)1̂Sg(x) ≤ ||f ||
L
4
3 (Zd

N)
·

∑
x∈Zd

N

|1̂Sg(x)|
4

 1
4

.
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Proof of the universal restriction theorem (continued)

We have ∑
x∈Zd

N

|1̂Sg(x)|
4

= N−2d
∑

m,l ,m′,l ′∈S
g(m)g(l)g(m′)g(l ′)

∑
x

χ((m + l −m′ − l ′) · x)

= N−d
∑

m+l=m′+l ′;m,l ,m′,l ′∈S
g(m)g(l)g(m′)g(l ′)
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Proof of the universal restriction theorem (continued)

The quantity above is bounded by

N−d max
U⊂S

Λ(U)

|U|2
· ||g ||4L2(Zd

N)
.

This is clear if g is an indicator function, and it holds in general by
writing a function as a linear combination of indicator functions.

It follows that∑
x∈Zd

N

|1̂Sg(x)|
4

 1
4

≤ N− d
4 ·
(
max
U⊂S

Λ(U)

|U|2

) 1
4

· ||g ||L2(Zd
N)
.
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Proof of the universal restriction theorem (continued)

Putting everything together, we see that(
1

|S |
∑
m∈S

|f̂ (m)|
2

) 1
2

≤ N− d
4 ·
(
max
U⊂S

Λ(U)

|U|2

) 1
4

· |S |−
1
2 · ||f ||

L
4
3 (Zd

N)

=

(
|S |
N

d
2

)− 1
2

·
(
max
U⊂S

Λ(U)

|U|2

) 1
4

· N− d
2 ·

∑
x∈Zd

N

|f (x)|
4
3

 3
4

.

This completes the proof of the universal restriction theorem.
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Proof of the additive energy uncertainty principle

By the universal restriction theorem,

(
1

|S |
∑
m∈S

|f̂ (m)|
2

) 1
2

≤
(
|S |
N

d
2

)− 1
2

·
(
max
U⊂S

Λ(U)

|U|2

) 1
4

· N− d
2 ·

(∑
x∈E

|f (x)|
4
3

) 3
4

.

It follows that (∑
m∈S

|f̂ (m)|
2

) 1
2

≤ |S |
1
2 ·
(
|S |
N

d
2

)− 1
2

·
(
max
U⊂S

Λ(U)

|U|2

) 1
4

· N− d
2 ·

(∑
x∈E

|f (x)|
4
3

) 3
4

.
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Proof of the additive energy uncertainty principle
(continued)

Since f̂ is supported in S , we can apply Plancherel and obtain(∑
x∈E

|f (x)|2
) 1

2

≤ |S |
1
2 ·
(
|S |
N

d
2

)− 1
2

·
(
max
U⊂Σ

Λ(U)

|U|2

) 1
4

· N− d
2 ·

(∑
x∈E

|f (x)|
4
3

) 3
4

.

Applying Hölder’s inequality, we obtain(∑
x∈E

|f (x)|2
) 1

2

≤ |S |
1
2 ·
(
|S |
N

d
2

)− 1
2

·
(
max
U⊂S

Λ(U)

|U|2

) 1
4

· |E |
1
4 · N− d

2 ·

(∑
x∈E

|f (x)|2
) 1

2

.
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Proof of the additive energy uncertainty principle
(continued)

It follows that

N
d
4 ≤

(
max
U⊂S

Λ(U)

|U|2

) 1
4

· |E |
1
4 ,

and we conclude that

Nd ≤ |E | ·max
U⊂S

Λ(U)

|U|2
.

Exactly the same argument with f replaced by f̂ and S replaced by E
yields

Nd ≤ |S | ·max
F⊂E

Λ(F )

|F |2
.
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Another version of the additive energy uncertainty principle

It would be very convenient to work out a version of the additive
energy uncertainty principle purely in terms of the additive energy of
E = supp(f ) and S = supp(f̂ ). This is where we not turn our
attention.

Theorem

(K. Aldahleh, A. Iosevich, J. Iosevich, J. Jaimangal, A. Mayeli, and S.
Pack) Let f : Zd

N → C with supp(f ) = E and supp(f̂ ) = S . Then for any
α ∈ [0, 1],

Nd ≤ Λ
α
3 (E )Λ

1−α
3 (S)|E |1−α|S |α.
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Proof of the alternate version of the additive energy
uncertainty principle

We have
f (x) = N− d

2

∑
m∈S

χ(x ·m)f̂ (m).

It follows that

|f (x)| ≤ N− d
2 · |S |

3
4 ·

∑
m∈Zd

N

|f̂ (m)|
4

 1
4

.
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Proof of the alternate version of the additive energy
uncertainty principle (continued)

We have ∑
m∈S

|f̂ (m)|
4

= N−2d
∑
m∈Zd

N

∑
x ,y ,x ′,y ′∈E

χ((x + y − x ′ − y ′) ·m)f (x)f (y)f (x ′)f (y ′)

= N−d
∑

x+y=x ′+y ′;x ,y ,x ′,y ′∈E
f (x)f (y)f (x ′)f (y ′)

≤ N−d · Λ(E ) · ||f ||4L∞(E).
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Proof of the alternate version of the additive energy
uncertainty principle (continued)

Putting everything together, we see that

|f (x)| ≤ N− d
2 · |S |

3
4 · N− d

4 · Λ
1
4 (E ) · ||f ||L∞(E).

Taking the maximum over x ∈ E and cancelling the L∞(E ) norms, we
obtain

N
3d
4 ≤ Λ

1
4 (E ) · |S |

3
4 .

Equivalently,

Nd ≤ Λ
1
3 (E ) · |S |.

Reversing the roles of E and S , we obtain

Nd ≤ Λ
1
3 (S) · |E |, which completes the proof.
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Bourgain’s Λq theorem - general formulation

Jean Bourgain proved that if G is a locally compact abelian group,
ϕ1, . . . , ϕn are orthogonal functions with ||ϕj ||∞ ≤ 1, the for a generic

set S ⊂ {1, 2, . . . , n} of size ≈ n
2
q , q > 2,∣∣∣∣∣

∣∣∣∣∣∑
i∈S

aiϕi

∣∣∣∣∣
∣∣∣∣∣
Lq(G)

≤ C (q) ·

(∑
i∈S

|ai |2
) 1

2

,

where C (q) depends only on q.

As we shall see, this result has a beautiful built-in uncertainty
principle.
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Bourgain’s Λq theorem

It is a consequence of Bourgain’s celebrated Λp theorem in locally

compact abelian groups that if f : Zd
N → C and f̂ is supported in S ,

then for a ”generic” set of size ≈ N
2d
q , 2 < q <∞, 1

Nd

∑
x∈Zd

N

|f (x)|q
 1

q

≤ Kq(S)

 1

Nd

∑
x∈Zd

N

|f (x)|2
 1

2

,

with Kq(S) independent of N.

It is not difficult to see that this inequality implies that the support of
f must be a positive proportion of Zd

N .
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A direct consequence of Bourgain’s Λq theorem

Suppose that S is generic, as in Bourgain’s theorem.

Suppose that f is supported in E ⊂ Zd
N and f̂ is supported in S .

Bourgain’s theorem implies that

N− d
q · |E |

1
q

(
1

|E |
∑
x∈E

|f (x)|q
) 1

q

≤ Kq(S)N
− d

2 · |E |
1
2

(
1

|E |
∑
x∈E

|f (x)|2
) 1

2

.
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A direct consequence of Bourgain’s Λq theorem

It follows that

|E | ≥ Nd

(Kq(S))
1

1
2−

1
q

.

It follows that if f̂ is supported in a generic set of size ≈ Nd−ϵ, then
f is supported on a positive proportion of Zd

N .

We conclude that if we send the Fourier transform of a signal f
supported on a set of size o(Nd), and the frequencies in S ⊂ Zd

N

satisfying a Λq, q > 2, inequality are missing, we can recover f
exactly and uniquely with very high probability.
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Annihilating pairs

Fedja Nazarov (1993) proved the following beautiful inequality, which
was generalized to higher dimension (under additional assumptions)
by Philippe Jaming and others.

Let E , S ⊂ R have finite measure. Then there exists a constants
c > 0 such that

||f ||L2(R) ≤ ec|E ||S|
(
||f ||L2(E c ) + ||f̂ ||L2(Sc )

)
.

We may discuss the continuous case in more detail later in these
lectures.

For the moment we immerse ourselves back in the world of finite
signals.
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Annihilating pairs: Ghobber and Jaming

Let f : Zd
N → C. Ghobber and Jaming proved in 2011 that if

E ,S ⊂ Zd
N , |E | · |S | < Nd , then

||f ||L2(Zd
N)

≤

1 +
1

1−
√

|E ||S|
Nd

 ·
(
||f ||L2(E c ) + ||f̂ ||L2(Sc )

)
.

Observe that this result easily implies the classical uncertainty
principle since if f is supported in E , f̂ is supported in S , and

|E | · |S | < Nd ,

then the right hand side of the inequality above is 0. Hence the left
hand side is also 0 and the uncertainty principle is established.
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Proof of the Ghobber-Jaming result

We have
||1̂E f ||L2(S) ≤ N− d

2 · |S |
1
2 · ||f ||L1(E)

≤ N− d
2 · |S |

1
2 · |E |

1
2 · ||f ||L2(E).

On the other hand,

||1̂E f ||L2(Sc ) ≥ ||1̂E f ||L2(Zd
N)

− ||1̂E f ||L2(S)

≥ ||f ||L2(E)

(
1− N− d

2 · |S |
1
2 · |E |

1
2

)
.
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Proof of the Ghobber-Jaming result (continued)

We are almost ready to drive for the finish line. By the triangle
inequality,

||f ||L2(Zd
N)

≤ ||f ||L2(E) + ||f ||L2(E c )

≤ ||1̂E f ||L2(Sc ) ·
1

1−
√

|E ||S|
Nd

+ ||f ||L2(E c )

= ||f̂ − 1̂E c f ||L2(Sc ) ·
1

1−
√

|E ||S |
Nd

+ ||f ||L2(E c )
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Proof of the Ghobber-Jaming result (continued)

≤
(
||f̂ ||L2(Sc ) + ||f ||L2(E c )

)
· 1

1−
√

|E ||S |
Nd

+ ||f ||L2(E c )

1 +
1

1−
√

|E ||S|
Nd

 ·
(
||f ||L2(E c ) + ||f̂ ||L2(Sc )

)
,

and the proof is complete.
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Annihilating pairs and structure of sets

Just as we were able prove a stronger uncertainty principle in the
presence of limited additive structure, we can do the same in the case
of annihilating pairs inequalities.

The following is a recent result due to A.I., P. Jaming and A. Mayeli.
Suppose that a (p, q) Fourier restriction estimate holds for S ⊂ Zd

N ,
1 ≤ p ≤ 2 ≤ q, with norm Cp,q. Then

||f ||L2(Zd
N)

≤

1 +
1

1−

√
C2
p,q |E |

2−p
p |S |

Nd

 ·
(
||f ||L2(E c ) + ||f̂ ||L2(Sc )

)
,

provided that

|E |
2−p
p |S | < Nd

C 2
p,q

.
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The case 1 ≤ p ≤ q ≤ 2

If 1 ≤ p ≤ q ≤ 2 and if a (p, q) Fourier restriction estimate holds for
S ,

||f ||L2(Zd
N)

≤

1 +
|E |

1
2
− 1

q′

1−

(
|S||E |

(q′−p)q
q′p Cq

p,q

Nd

) 1
q


(
||f ||L2(E c ) + ||f̂ ||L2(Sc )

)
,

provided that

|E |
(q′−p)q

q′p · |S | < Nd

Cq
p,q
.
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Proof of the A.I.-Jaming-Mayeli result

We first handle the case 1 ≤ p ≤ 2 ≤ q. By the restriction
assumption,

||1̂E f ||L2(S) = |S |
1
2 ||1̂E f ||L2(µS )

≤ |S |
1
2 ||1̂E f ||Lq(µS )

≤ |S |
1
2 · Cp,qN

− d
2 ||f ||Lp(E)

by assumption.

By Holder’s inequality, this quantity is bounded by

Cp,q|S |
1
2N− d

2 |E |
2−p
2p ||f ||L2(E) =

√
C 2
p,q|S ||E |

2−p
p

Nd
||f ||L2(E).
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Proof of the A.I.-Jaming-Mayeli result (continued)

On the other hand,

||1̂E f ||L2(Sc ) ≥ ||1̂E f ||L2(Zd
N)

− ||1̂E f ||L2(S)

≥

1−

√
C 2
p,q|S ||E |

2−p
p

Nd

 ||f ||L2(E).

We are now ready for the conclusion of the proof. We have

||f ||L2(Zd
N)

≤ ||f ||L2(E) + ||f ||L2(E c )

≤

1−

√
C 2
p,q|S ||E |

2−p
p

Nd


−1

||1̂E f ||L2(Sc ) + ||f ||L2(E c ).
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Proof of the A.I.-Jaming-Mayeli result (continued)

We are left to unravel the quantity ||1̂E f ||L2(Sc ). We have

||1̂E f ||L2(Sc ) = ||1Sc f̂ − 1Sc 1̂E c f ||L2(Zd
N)

≤ ||f̂ ||L2(Sc ) + ||f ||L2(E c ).

Plugging this back into above, we have

||f ||L2(Zd
N)

≤

≤

1−

√
C 2
p,q|S ||E |

2−p
p

Nd


−1 (

||f̂ ||L2(Sc ) + ||f ||L2(E c )

)
+ ||f ||L2(E c )

and the case 1 ≤ p ≤ 2 ≤ q is established.
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Proof of the A.I.-Jaming-Mayeli result (continued)

We now handle the case 1 ≤ p ≤ q ≤ 2. By assumption, we have

||1̂E f ||Lq(S) ≤ |S |
1
qCp,qN

− d
2 ||f ||Lp(E)

≤ |S |
1
q |E |

1
p
− 1

2Cp,qN
− d

2 ||f ||L2(E).

Lemma (Hausdorff-Young inequality)

Suppose that f : Zd
N → C and 1 ≤ p ≤ 2. Then

||f̂ ||Lp′ (Zd
N)

≤ N
− d

2

(
2−p
p

)
||f ||Lp(Zd

N)
.
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Proof of the A.I.-Jaming-Mayeli result (continued)
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Proof of the A.I.-Jaming-Mayeli result (continued)

The case p = 1 follows by the triangle inequality and the definition of
the Fourier transform. The case p = 2 is Plancherel. The result
follows by Riesz-Thorin interpolation theorem.

Using Hausdorff-Young, we have

||1̂E f ||Lq(Zd
N)

≥ N
d
2

(
2−q
q

)
||f ||Lq′ (E)

≥ N
d
2

(
2−q
q

)
|E |

1
2
− 1

q′ ||f ||L2(E).
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Proof of the A.I.-Jaming-Mayeli result (continued)

Combining, we obtain

||f ||L2(E) ≤
||1̂E f ||Lq(Sc )

N
d
2

(
2−q
q

)
|E |

1
2
− 1

q′ − |S |
1
q |E |

1
p
− 1

2Cp,qN
− d

2

.

We now unravel ||1̂E f ||Lq(Sc ). We have

||1̂E f ||Lq(Sc ) = ||f̂ − 1̂E c f ||Lq(Sc )

≤ ||f̂ ||Lq(Sc ) + ||1̂E c f ||Lq(Sc )
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Proof of the A.I.-Jaming-Mayeli result (continued)

≤ |Sc |
1
q
− 1

2

(
||f̂ ||L2(Sc ) + ||f ||L2(E c )

)
.

We have
||f ||L2(Zd

N)
≤ ||f ||L2(E) + ||f ||L2(E c ).

Rearranging the terms yields the conclusion of the case
1 ≤ p ≤ q ≤ 2.
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The additive energy annihilation inequality

Theorem

(A.I., P. Jaming, and A. Mayeli (2024)) Let f : Zd
N → C. Let E ,S ⊂ Zd

N

such that

max
U⊂S

Λ(U)

|U|2
· |E | < Nd .

Then
||f ||L2(Zd

N)
≤ Cann

(
||f ||L2(E c )+||f̂ ||L2(Sc )

)
,

where Cann may be taken to be

1 +
1

1−

√√√√(
maxU⊂S

Λ(U)

|U|2

) 1
2
|E |

1
2

N
d
2

.
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Proof of the additive energy annihilation inequality

This result follows by inserting(
|S |
N

d
2

)− 1
2

·
(
max
U⊂S

Λ(U)

|U|2

) 1
4

from the universal restriction theorem in place of the constant C 4
3
,2 in

the restriction annihilation inequality above.

This is by no means the only universal restriction theorem one can
write down, and there is much work left to do in this direction.

Similar results can be obtained in Euclidean space as well, and we
shall talk about that if time allows.
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A symmetrized extension

We can symmetrize, as before, and replace Cann above with1 +
1

1−

√√√√(
maxU⊂S

Λ(U)

|U|2

) 1
2
|E |

1
2

N
d
2



α

times 1 +
1

1−

√√√√(
maxF⊂E

Λ(F )

|F |2

) 1
2
|S|

1
2

N
d
2



1−α

for any α ∈ [0, 1] provided that
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A symmetrized extension (continued)

max
U⊂S

Λ(U)

|U|2
· |E | < Nd

and

max
F⊂E

Λ(F )

|F |2
· |S | < Nd .

As usual, the corresponding uncertainty principle can be deduced by
assuming that f is supported in E and f̂ is supported in S .
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A symmetrized extension (continued)
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An Lp annihilating pairs inequality

Theorem

(A.I., P. Jaming and. A. Mayeli (2024)) Let f : Zd
N → C. Let E , S ⊂ Zd

N

such that S satisfies the (p, q) restriction estimate for some

1 ≤ p ≤ 2 ≤ q, and |E |2−p · |S | < Nd

Cp
p,q

. Then for 1 ≤ p ≤ 2, ||f ||Lp′ (Zd
N)

is

bouned by

N
−d

(
1
2
− 1

p′

)

1−
(
|E |2−p |S|Cp

p,q

Nd

) 1
p

||f̂ ||Lp(Sc ) +

1 +
1

1−
(
|E |2−p |S|Cp

p,q

Nd

) 1
p

 ||f ||Lp′ (E c ).

Since (1, q) restriction estimate always holds with C1,q = 1, then for any
sets E , S ⊂ Zd

N such that |E ||S | < Nd , ||f ||L∞(Zd
N)

is bounded by

N− d
2

1− |E ||S |
Nd

||f̂ ||L1(Sc ) +

(
1 +

1

1− |E ||S |
Nd

)
||f ||L∞(E c ).
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Proof of the Lp annihilating pairs inequality

By the (p, q) restriction bound, we have

||1̂E f ||Lp(S) ≤ |S |
1
p ·

(
1

|S |
∑
m∈S

|1̂E f (m)|
q

) 1
q

≤ Cp,qN
− d

2 |S |
1
p ||f ||Lp(E)

≤ Cp,qN
− d

2 |S |
1
p |E |

2−p
p ||f ||Lp′ (E).
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Proof of the Lp annihilating pairs inequality (continued)

On the other hand,

||1̂E f ||Lp(Sc ) ≥ ||1̂E f ||Lp(Zd
N)

− ||1̂E f ||Lp(S)

≥ N
d
2

(
1− 2

p′

)
||f ||Lp′ (E) − Cp,qN

− d
2 |S |

1
p |E |

2−p
p ||f ||Lp′ (E)

= N
d
2

(
1− 2

p′

)1−

(
|E |2−p|S |Cp

p,q

Nd

) 1
p

 ||f ||Lp′ (E c ),

where in the second line we used the Hausdorff-Young inequality.
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Proof of the Lp annihilating pairs inequality (continued)
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Proof of the Lp annihilating pairs inequality (continued)

Observe that

||1̂E f ||Lp(Sc ) = ||f̂ − 1̂E c f ||Lp(Sc ) ≤ ||f̂ ||Lp(Sc ) + ||1̂E c f ||Lp(Sc )

≤ ||f̂ ||Lp(Sc ) +

(∑
m∈Sc

|1̂E c f (m)|
p

) 1
p

≤ ||f̂ ||Lp(Sc ) + |Sc |
1
p

(
1

|Sc |
∑
m∈Sc

|1̂E c f (m)|
p

) 1
p
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Proof of the Lp annihilating pairs inequality (continued)
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) 1
p
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Proof of the Lp annihilating pairs inequality (continued)

≤ ||f̂ ||Lp(Sc ) + |Sc |
1
p

(
1

|Sc |
∑
m∈Sc

|1̂E c f (m)|
p′
) 1

p′

= ||f̂ ||Lp(Sc ) + |Sc |
1
p
− 1

p′

(∑
m∈Sc

|1̂E c f (m)|
p′
) 1

p′

≤ ||f̂ ||Lp(Sc ) + |Sc |
1
p
− 1

p′ · N− d
2

(
1− 2

p′

)
||f ||Lp(E c )

≤ ||f̂ ||Lp(Sc ) + N
d
(

1
p
− 1

2

)
||f ||Lp(E c ).

By the triangle inequality,

||f ||Lp′ (Zd
N)

≤ ||f ||Lp′ (E) + ||f ||Lp′ (E c )
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Proof of the Lp annihilating pairs inequality (continued)

≤ N
−d

(
1
2
− 1

p′

)

1−
(
|E |2−p |S |Cp

p,q

Nd

) 1
p

||1̂E f ||Lp(Sc ) + ||f ||Lp′ (E c )

≤ N
−d

(
1
2
− 1

p′

)

1−
(
|E |2−p |S |Cp

p,q

Nd

) 1
p

·
(
||f̂ ||Lp(Sc ) + N

d
(

1
p
− 1

2

)
||f ||Lp(E c )

)
+||f ||Lp′ (E c )
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Proof of the Lp annihilating pairs inequality (continued)

≤ N
−d

(
1
2
− 1

p′

)

1−
(
|E |2−p |S |Cp

p,q

Nd

) 1
p

||f̂ ||Lp(Sc )

+

1 +
1

1−
(
|E |2−p |S |Cp

p,q

Nd

) 1
p

 ||f ||Lp′ (E c ),

and the proof is complete.
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A consequence of annihilating pairs inequalities

The following result was originally proven directly by A.I. and A.
Mayeli earlier this year, but it also follows directly from the
annihilating pairs inequalities we just proved.

Theorem

Suppose that f : Zd
N → C is supported in E ⊂ Zd

N , and f̂ : Zd
N → C is

supported in S ⊂ Zd
N . Suppose S satisfies the (p, q) restriction estimate

with norm Cp,q, 1 ≤ p ≤ q, p ≤ 2.

i) If q ≥ 2, then

|E |
2−p
p · |S | ≥ Nd

C 2
p,q

.

ii) If 1 ≤ p ≤ q ≤ 2, then

|E |
(q′−p)q

q′p · |S | ≥ Nd

Cq
p,q
.
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From Restriction to Exact Recovery

Corollary

Let f : Zd
N → C with support supp(f ) = E . Let r be another signal with

support of the same size such that r̂(m) = f̂ (m) for m /∈ S , and 0
otherwise. Suppose S ⊂ Zd

N satisfies the (p, q), p < 2, restriction estimate
with uniform constant Cp,q. Then f can be reconstructed from r uniquely
if

|E |
1
p · |S | < Nd

2
1
pCp,q

,

or if

|E |
2−p
p · |S | < Nd

2
2−p
p C 2

p,q

when q ≥ 2,

and

|E |
(q′−p)q

q′p · |S | < Nd

2
(q′−p)q

q′p Cq
p,q

when q ≤ 2.
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Concentration inequality

Donoho and Stark showed that if f : Zd
N → C, and E , S ⊂ Zd

N such
that f is concentrated in E at level ϵE in the sense that

||f ||L2(E c ) ≤ ϵE ||f ||L2(Zd
N)
,

and f̂ is concentrated in S at level ϵS in the sense that

||f̂ ||L2(Sc ) ≤ ϵS ||f̂ ||L2(Zd
N)
,

with ϵE , ϵS both < 1, then

ϵE + ϵS ≥ 1−
√

|E ||S |
Nd

.
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Concentration inequality (continued)

The following is a direct consequence of our annihilation pairs
inequalities.

Corollary

Let f : Zd
N → C and suppose that f is L2-concentrated on E at level

ϵE > 0 and f̂ is L2-concentrated on S at level ϵS . Suppose that S ⊂ Zd
N

satisfying the (p, q) restriction estimate with norm Cp,q. Then

ϵE + ϵS ≥ 1

1 + 1

1−

√
C2
p,q |E |

2−p
p |S|

Nd

.

Note that in the case p = 1, when the restriction estimate always
holds with constant C1,q = 1, we recover a condition that is slightly
stronger than the Donoho-Stark condition above.
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Proof of the concentration inequality

The concentration inequality and the assumptions on the
concentration of f on E and concentration of f̂ on S imply that

||f ||L2(Zd
N)

≤ Cann

(
||f ||L2(E c ) + ||f̂ ||L2(Sc )

)
≤ Cann(ϵE + ϵS)||f ||L2(Zd

N)
.

It follows that if f is not identically 0, then

Cann(ϵE + ϵS) ≥ 1,

which implies that

ϵE + ϵS ≥ 1

Cann
,

and the proof is complete.
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Arithmetic ideas and uncertinty

In 2006, Terry Tao proved that if f : Zp → C, p prime, f is supported

in E and f̂ is supported in S , then

|E |+ |S | ≥ p + 1.

The key element of the proof is a classical theorem due to Cebotarev
which says that if A,B ⊂ Zp, |A| = |B|, then

det{χ(xm)}x∈A,m∈B ̸= 0, where χ(t) = e
2πit
p .

Roy Meshulam used Tao’s result and a beautiful iteration argument
show that if f : Zd

p → C is supported in E and f̂ is supported in S ,
then for 0 ≤ j ≤ d − 1,

pj |E |+ pd−j−1|S | ≥ pd + pd−1.
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Sketch of the proof of Cebotarev’s theorem

Observe that if P(x1, . . . , xn) is a polynomial with integer entries, and

P(ω1, . . . , ωn) = 0,

where ω1, . . . , ωn are roots of unity modulo p, then

P(1, . . . , 1) = 0.

Let ωj = e
2πixj
p . We must show that

det{ωξk
j }

1≤j ,k≤n
̸= 0.
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Sketch of the proof of Cebotarev’s theorem (continued)

Define
D(z1, . . . , zn) = det{zξkj }

1≤j ,k≤n

= P(z1, . . . , zn)
∏

1≤j<j ′≤n

(zj − zj ′).

The proof is completed by showing that P(1, . . . , 1), which follows by
a tedious calculation which reduces matters to the fact that the
classical Vandermonde determinant ̸= 0.
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Proof of Tao’s uncertainty principle

Suppose not. We assume that |E | ≥ 1 since otherwise there is
nothing to prove. For every m /∈ S , we have

0 = f̂ (m) = p−
1
2

∑
x∈E

χ(−xm)f (x).

This gives us p − |S | equations and |E | unknowns, where the
unknowns are the values of f (x), x ∈ E .

By assumption, p − |S | ≥ |E |, so we have at least as many equations
as variables. By removing equations, as necessary, we may assume
that we have exactly as many equations as variables.

By Chebotarev’s theorem, the resulting square matrix is invertible,
which implies that f (x) = 0 for all x ∈ E . This completes the proof.
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Two dimensions - the magic lemma

Lemma

(A.I., A. Mayeli, and J. Pakianathan (2017)) [Magic Lemma] Suppose that
f : Z2

p → Q, p odd prime. Suppose that f̂ (m) = 0 for some m ̸= (0, 0).

Then f̂ (rm) = 0 for all r ̸= 0.

Moreover, if f (x) = 1E (x), the indicator function of E ⊂ Z2
p, and

1̂E (m) = 0 for some m ̸= (0, 0), then E is equidistributed on the p lines
orthogonal to m.

Suppose that 1̂E (m) = 0, as above, with m ̸= (0, 0) and let r ̸= 0.
We have

1̂E (rm) = p−2
∑
t

ζ
t
r n(t/r) = p−2

∑
t

ζtn(t) = 0.

It follows that if m ̸= (0, 0) is a zero of 1̂E , then so is every non-zero
multiple of m.
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Lemma

(A.I., A. Mayeli, and J. Pakianathan (2017)) [Magic Lemma] Suppose that
f : Z2

p → Q, p odd prime. Suppose that f̂ (m) = 0 for some m ̸= (0, 0).

Then f̂ (rm) = 0 for all r ̸= 0.

Moreover, if f (x) = 1E (x), the indicator function of E ⊂ Z2
p, and

1̂E (m) = 0 for some m ̸= (0, 0), then E is equidistributed on the p lines
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Suppose that 1̂E (m) = 0, as above, with m ̸= (0, 0) and let r ̸= 0.
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Proof of the magic lemma

Observe that

0 =
∑
t

ζtn(t) = n(0) + n(1)ζ + n(2)ζ2 + · · ·+ n(p − 1)ζp−1

says that ζ satisfies the polynomial of degree p − 1 with coefficients
given by {n(t)}.

The minimal polynomial of ζ is

1 + ζ + ζ2 + · · ·+ ζp−1.

We conclude that n(t) = constant, so E has the same number of
points on lines ⊥ m. In particular, |E | is a multiple of p.
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The uncertainty principle in the continuous setting

The remainder of the material in these lectures will be dedicated to
the uncertainty principle and related topics in the continuous setting.
More precisely, the following topics will be covered:

i) Spectral synthesis in Rd and connections with restriction theory.

ii) The uncertainty principle on Riemannian manifolds.

iii) A random variant of Shannon-Nyquist sampling on Riemannian
manifolds and unique continuation of the Laplace-Beltrami operator.
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Another version of the uncertainty principle

The following beautiful version of the Fourier uncertainty principle
was obtained by Agranovsky and Narayanan.

Suppose that f ∈ L1loc(Rd) and f̂ is supported in S is a k-dimensional
submanifold of Rd . Suppose further that f ∈ Lp(Rd) for some
p ≤ 2d

k . Then f ≡ 0.

A natural question is whether the exponent 2d
k is sharp, and what

does it have to with restriction theory? If k = d − 1 and Sd−1 is the
unit sphere, 2d

d−1 is the sharp conjectured exponent for the dual of the
restriction conjecture.

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine
85 / 108



Another version of the uncertainty principle

The following beautiful version of the Fourier uncertainty principle
was obtained by Agranovsky and Narayanan.

Suppose that f ∈ L1loc(Rd) and f̂ is supported in S is a k-dimensional
submanifold of Rd . Suppose further that f ∈ Lp(Rd) for some
p ≤ 2d

k . Then f ≡ 0.

A natural question is whether the exponent 2d
k is sharp, and what

does it have to with restriction theory? If k = d − 1 and Sd−1 is the
unit sphere, 2d

d−1 is the sharp conjectured exponent for the dual of the
restriction conjecture.

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine
85 / 108



Another version of the uncertainty principle

The following beautiful version of the Fourier uncertainty principle
was obtained by Agranovsky and Narayanan.

Suppose that f ∈ L1loc(Rd) and f̂ is supported in S is a k-dimensional
submanifold of Rd . Suppose further that f ∈ Lp(Rd) for some
p ≤ 2d

k . Then f ≡ 0.

A natural question is whether the exponent 2d
k is sharp, and what

does it have to with restriction theory? If k = d − 1 and Sd−1 is the
unit sphere, 2d

d−1 is the sharp conjectured exponent for the dual of the
restriction conjecture.

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine
85 / 108



Proof of the Agranovsky-Narayanan theorem

Let χ ∈ C∞
0 , supported on the unit ball,∫

χ(x)dx = 1,

χϵ(x) = ϵ−dχ(x/ϵ).

Let
uϵ = u ∗ χϵ, u = f̂ .

By Plancherel,

||uϵ||2 =
(∫

|f (x)|2|χ̂(ϵx)|2dx
) 1

2

≲ ||f ||p · ϵ
− d

p′ .
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Proof of the Agranovsky-Narayanan theorem (continued)

Let ψ be a smooth cut-off function. We have

| < uϵ, ψ > |2 ≤ ||uϵ||22 ·
∫
Sϵ

|ψ(ξ)|2dξ,

where Sϵ is the ϵ-neighborhood of S .

≲ ||f ||2p · ϵ
− 2d

p′ · ||ψ||2∞ · |Sϵ|

≲ ϵ
− 2d

p′ · ϵd−k → 0 if p <
2d

k
.

With a bit more care, it is not difficult to recover the endpoint.

The same argument works for any set of packing dimension k (not
necessarily an integer).
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Sharpness (or lack of it)

If S = Sd−1, it is not difficult to see that the exponent 2d
k = 2d

d−1 is
best possible since

σ̂S(ξ) = J d−2
2
(|ξ|)|ξ|−

d−2
2 ∈ Lp(Rd) iff p >

2d

d − 1
,

where σ is the surface measure on S .

On the other hand, if

S =
{
(t, t2, . . . , td) : t ∈ [0, 1]

}
, d ≥ 3,

it is known that

σ̂S ∈ Lp(Rd) iff p >
d2 + d + 2

2
>

2d

k
= 2d .
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A geometric approach to spectral synthesis

Let f̂ be supported in S and let us cover S by a collection of finitely
overlapping rectangles

{Rj ,δ}
N(δ)
j=1 , |Rj ,δ| → 0 as δ → 0.

Let µj ,δ denote a smooth partition of unity subordinate to {Rj ,δ}
N(δ)
j=1 .

Since f̂ is supported in S , it is sufficient to consider

f̂ (ξ) ·
N(δ)∑
j=1

µj ,δ(ξ), i.e.
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A geometric approach to spectral synthesis (continued)

||f ||∞ ≈

∣∣∣∣∣∣
∣∣∣∣∣∣f ∗

N(δ)∑
j=1

µ̂j ,δ

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

≤ ||f ||p ·

∣∣∣∣∣∣
∣∣∣∣∣∣
N(δ)∑
j=1

µ̂j ,δ

∣∣∣∣∣∣
∣∣∣∣∣∣
p′

.

By Plancherel, ∣∣∣∣∣∣
∣∣∣∣∣∣
N(δ)∑
j=1

µ̂j ,δ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≈

N(δ)∑
j=1

|Rj ,δ|

 1
2

≡ |Sδ|
1
2 .

Note that Sδ is not necessarily the δ-neighborhood of S .

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine
90 / 108



A geometric approach to spectral synthesis (continued)

||f ||∞ ≈

∣∣∣∣∣∣
∣∣∣∣∣∣f ∗

N(δ)∑
j=1

µ̂j ,δ

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

≤ ||f ||p ·

∣∣∣∣∣∣
∣∣∣∣∣∣
N(δ)∑
j=1

µ̂j ,δ

∣∣∣∣∣∣
∣∣∣∣∣∣
p′

.

By Plancherel, ∣∣∣∣∣∣
∣∣∣∣∣∣
N(δ)∑
j=1

µ̂j ,δ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≈

N(δ)∑
j=1

|Rj ,δ|

 1
2

≡ |Sδ|
1
2 .

Note that Sδ is not necessarily the δ-neighborhood of S .

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine
90 / 108



A geometric approach to spectral synthesis (continued)

||f ||∞ ≈

∣∣∣∣∣∣
∣∣∣∣∣∣f ∗

N(δ)∑
j=1

µ̂j ,δ

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

≤ ||f ||p ·

∣∣∣∣∣∣
∣∣∣∣∣∣
N(δ)∑
j=1

µ̂j ,δ

∣∣∣∣∣∣
∣∣∣∣∣∣
p′

.

By Plancherel, ∣∣∣∣∣∣
∣∣∣∣∣∣
N(δ)∑
j=1

µ̂j ,δ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≈

N(δ)∑
j=1

|Rj ,δ|

 1
2

≡ |Sδ|
1
2 .

Note that Sδ is not necessarily the δ-neighborhood of S .

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine
90 / 108



A geometric approach to spectral synthesis (continued)

On the other hand, since Rj ,δ’s are rectangles,∣∣∣∣∣∣
∣∣∣∣∣∣
N(δ)∑
j=1

µ̂j ,δ

∣∣∣∣∣∣
∣∣∣∣∣∣
1

≲
N(δ)∑
j=1

|Rj ,δ| · |R∗
j ,δ| = N(δ).

By Riesz-Thorin, ∣∣∣∣∣∣
∣∣∣∣∣∣
N(δ)∑
j=1

µ̂j ,δ

∣∣∣∣∣∣
∣∣∣∣∣∣
p′

≲ |Sδ|
1
p · (N(δ))1−

2
p .

The idea is to find the largest p for which this quantity → 0 as δ → 0.
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A flat example

Suppose that S is a compact piece of a hyperplane. cover it with a
single 1× 1× · · · × 1× δ rectangle.

It follows that
|Sδ| ≈ δ, and N(δ) = 1.

We conclude that

|Sδ|
1
p · (N(δ))1−

2
p ≈ δ

1
p ,

which goes to 0 for any p <∞.
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A fun example

Let S = Sd−1. Cover S by tangent δ
1
2 × δ

1
2 × . . . δ

1
2 × δ finitely

overlapping rectangles. It is not difficult to see that

|Sδ| ≈ δ, and N(δ) ≈ δ−
d−1
2 .

It follows that

|Sδ|
1
p · (N(δ))1−

2
p ≲ δ

1
p · δ−

d−1
2

(
1− 2

p

)
= δ

d
p
− d−1

2 .

It follows that the critical value for p is 2d
d−1 , which is consistent with

Agranovsky-Narayanan’s theorem.
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An even more entertaining example

Let S = {(t, t2, . . . , td) : t ∈ [0, 1]}. Cover S by δ
1
d × δ

2
d × · · · × δ

tangent rectangles.

A calculation shows that this can be done so that the collection has
finite overlap. In this case Sδ is not the δ-neighborhood of S .

It follows that

|Sδ| ≈ δ
d+1
2

− 1
d , and N(δ) ≈ δ−

1
d .

We conclude that

|Sδ|
1
p · (N(δ))1−

2
p ≲ δ

d+1
2p · δ−

1
dp · δ−

1
d

(
1− 2

p

)
, hence

pcritical =
d2 + d + 2

2
.
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Space curves

Theorem

(S. Guo, A. Iosevich, R. Zhang, and P. Zorich-Kranich (2023)) Let d ≥ 2

be a positive integer and suppose that 1 ≤ p < d2+d+2
2 . If f ∈ Lp(Rd) and

f̂ is supported on
{(t, t2, . . . , td) : t ∈ (0, 1)},

then f ≡ 0. The exponent d2+d+2
2 is best possible, up to the endpoint.

Moreover, the conclusion is still valid for small perturbations of this curve.

Note that the Agranovsky-Narayanan theorem yields the same
conclusion for p < 2d in this case.

We also note that d2+d+2
2 is the optimal extension exponent (more on

that in a moment).
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Connections with the restriction conjecture

On the very first page of these notes, we discussed the restriction
conjecture, which says that if Sd−1 is the unit sphere, then(∫

Sd−1

|f̂ (ξ)|
r
dσS(ξ)

) 1
r

≤ Cp,r

(∫
Rd

|f (x)|pdx
) 1

p

whenever

p <
2d

d + 1
, r ≤ d − 1

d + 1
p′,

where p′ is the conjugate exponent to p.

It is often convenient to state the dual of this inequality, the extension
conjecture.
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The extension conjecture

The dual of the restriction conjecture above says that

||f̂ σ||Lq(Rd ) ≤ Cp,q||f ||Lp(Sd−1),

whenever

q >
2d

d − 1
, p′ <

d − 1

d + 1
q.

In general, if S is compact, equipped with Borel measure σS , we say
that a (p, q)-extension estimate holds for S if

||f̂ σ||Lq(Rd ) ≤ Cp,q||f ||Lp(σS )
.

We call the inf of q’s for which this estimate holds the critical
extension exponent of S .

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine
97 / 108



The extension conjecture

The dual of the restriction conjecture above says that

||f̂ σ||Lq(Rd ) ≤ Cp,q||f ||Lp(Sd−1),

whenever

q >
2d

d − 1
, p′ <

d − 1

d + 1
q.

In general, if S is compact, equipped with Borel measure σS , we say
that a (p, q)-extension estimate holds for S if

||f̂ σ||Lq(Rd ) ≤ Cp,q||f ||Lp(σS )
.

We call the inf of q’s for which this estimate holds the critical
extension exponent of S .

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine
97 / 108



The extension conjecture

The dual of the restriction conjecture above says that

||f̂ σ||Lq(Rd ) ≤ Cp,q||f ||Lp(Sd−1),

whenever

q >
2d

d − 1
, p′ <

d − 1

d + 1
q.

In general, if S is compact, equipped with Borel measure σS , we say
that a (p, q)-extension estimate holds for S if

||f̂ σ||Lq(Rd ) ≤ Cp,q||f ||Lp(σS )
.

We call the inf of q’s for which this estimate holds the critical
extension exponent of S .

Alex Iosevich (University of Rochester ) On discrete, continuous and arithmetic aspects of Fourier uncertainty
September 2024: LMS-Lecture Series in Ukraine
97 / 108



Extension versus spectral synthesis

Based on examples we have so far, it seems reasonable to conjecture
that if f̂ is supported in S , and f ∈ Lp(Rd) for p smaller than the
critical extension exponent of S , then f ≡ 0.

I do not believe this conjecture. A potential counter-example is a
compact strictly convex surface S , which has non-vanishing curvature

in the sense that the volume of δ-caps is ≥ cδ
d+1
2 with c > 0 uniform.

I believe that it is possible to construct such a surface so that the
critical extension exponent is >> 2d

d−1 .
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Signal recovery on manifolds (joint work with A. Mayeli
and E. Wyman)

Let M be a compact Riemannian manifold without a boundary, and
let {ej}∞j=1 be the family of L2-normalized eigenfunctions of

√
−△.

Suppose that A is a measurable subset of M and we wish to recover
1A(x) from its Fourier coefficients, with frequencies in {j : λj ∈ S}
missing, where S is a subset of Λ, the set of eigenvalues of

√
−△.

We have

1A(x) =
∑
j

< 1A, ej > ej =
∑

j /∈{j :λj∈S}

< 1A, ej > ej+

+
∑

j∈{j :λj∈S}

< 1A, ej > ej = I (x) + II (x).
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Eigenvalues can be large

We have

|II (x)| ≤ |A|
1
2 ·

 ∑
j∈{j :λj∈S}

|ej(x)|2
 1

2

.

If the eigenfunctions are bounded, we can run the same argument
as before and obtain an exact recovery condition of the form

|A| ≲ 1

#{j : λj ∈ S}
.

If the manifold is homogeneous in the sense that there exists a
transitive group action on M, the argument also goes through. But
on general manifolds the situation is less clear.
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Sampling on manifolds

The basic question we ask is the following. Let (M, g) be a compact
d-dimensional Riemannian manifold, as above, and let e1, e2, . . ., en
denote the eigenfunctions of the Laplace-Beltrami operator on M,
where the corresponding eigenvalues λ1, λ2, . . . , λn are not necessarily
the lowest n eigenvalues.

When can we learn a function f ∈ span{e1, . . . , en} by observing its
value on some finite set of points x1, . . . , xm?
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Sampling on manifolds (continued)

Note, given such an f , we need only identify its Fourier coefficients aj
in

f =
∑
j

ajej .

But, 
f (x1)
f (x2)
...

f (xm)

 =


e1(x1) · · · en(x1)
e1(x2) · · · en(x2)

...
...

e1(xm) · · · en(xm)



a1
a2
...
an

 = A


a1
a2
...
an

 .
Hence, the recovery problem is equivalent to the matrix A having a
left inverse. This necessitates m ≥ n.
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Sampling on manifolds (continued)

The Nyquist-Shannon sampling theorem (ancient) says that if M is
the one-dimensional torus and the frequencies of f are in [−R,R],
then we can recover f from any net of separation ≤ 1

2R .

This result was generalized to the setting of Riemannian manifolds by
Pesenson (2008). In particular, if (M, g) is a d-dimensional
Riemannian manifold and f is a finite linear combination of
eigenfunctions {ej} with the corresponding eigenvalues bounded by
R, then f can be recovered from ≈ Rd suitably separated samples.

This type of a result is quite efficient if the spectrum of the function
consists of all the possible eigenfunctions with eigenvalues in a given
range, but if the set of eigenvalues is relatively sparse, a much better
result can expected. We will show that, if n points x1, . . . , xn are
selected randomly and independently with uniform probability from
M, then A almost certainly has non-zero determinant.
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Sampling on manifolds (continued)

Theorem

(A.I. and E. Wyman, 2024) Let (M, g) be a compact, connected
Riemannian manifold without boundary, and e1, . . . , en be an orthonormal
set of Laplace-Beltrami eigenfunctions on M. If x1, . . . , xn are chosen
independently and with uniform probability from M, then

det

e1(x1) · · · en(x1)
...

...
e1(xn) · · · en(xn)

 ̸= 0

with probability 1.
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Sampling on manifolds (continued)

Theorem

(A.i. and E. Wyman, 2024) Let (M, g) be a compact, connected
Riemannian manifold without boundary, and e1, . . . , en be an orthonormal
set of Laplace-Beltrami eigenfunctions on M. If x1, . . . , xn are chosen
independently and with uniform probability from M, then there exists a
positive integer k ≥ 2 such that

P


∣∣∣∣∣∣∣det

e1(x1) · · · en(x1)
...

...
e1(xn) · · · en(xn)


∣∣∣∣∣∣∣ ≤ ϵ

 ≤ cϵ
1
k ,

where c is a universal constant.
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Sampling on manifolds (continued)

Corollary

(A.I. and E. Wyman, 2024) Let (M, g) be a compact, connected
Riemannian manifold without boundary, and e1, . . . , en be an orthonormal
set of Laplace-Beltrami eigenfunctions on M. If x1, . . . , xn are chosen
independently and with uniform probability from M, then there exists a
positive integer k ≥ 2 such that

P {λlowest(x1, . . . , xn) ≤ ϵ} ≤ cϵ
1
nk ,

where c is a universal constant and λlowest(x) is the smallest eigenvalue of
the matrix e1(x1) · · · en(x1)

...
...

e1(xn) · · · en(xn)

 .
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Sampling on manifolds: key lemma

Lemma

If a finite linear combination of Laplace-Beltrami eigenfunctions vanishes
to infinite order at a point in a connected, compact manifold, then it
vanishes identically on the manifold.

The proof follows from the strong unique continuation property of
solutions of the Laplace-Beltrami eigenfunction equations.
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